Stokastik

Machine Learning, AI and Programming

Tag: Autoencoders

Understanding Variational AutoEncoders

This post is motivated from trying to find better unsupervised vector representations for questions pertaining to the queries from customers to our agents. Earlier, in a series of posts, we have seen how to design and implement a clustering framework for customer questions, so that we can efficiently find the most appropriate answer and at the same time find out most similar questions to recommend to the customer.

Continue Reading →

Neural Networks as a Function Approximator

For the past few days, I have been reading quite a lot of research papers, articles and blogs related to artificial neural networks and its transition towards deep learning. With so many different methods of selecting the best neural network architecture for a problem, the optimal hyper-parameters, the best optimization algorithm and so on, it becomes a little overwhelming to connect all the dots together when we ourselves start to […]

Continue Reading →