Stokastik

Machine Learning, AI and Programming

Tag: Deep Learning

Designing an automated Question-Answering System - Part IV

In the second post of this series we had listed down different vectorization algorithms used in our experiments for representing questions. Representations form the core of our intent clusters, because the assumption is that if a representation algorithm can capture syntactic as well as semantic meaning of the questions well, then if two questions which actually speak of the same intent, will have representations that are very close to each […]

Continue Reading →

Understanding Variational AutoEncoders

This post is motivated from trying to find better unsupervised vector representations for questions pertaining to the queries from customers to our agents. Earlier, in a series of posts, we have seen how to design and implement a clustering framework for customer questions, so that we can efficiently find the most appropriate answer and at the same time find out most similar questions to recommend to the customer.

Continue Reading →

Designing an Automated Question-Answering System - Part III

In continuation of my earlier posts on designing an automated question-answering system, in part three of the series we look into how to incorporate feedback into our system. Note that since getting labelled data is an expensive operation from the perspective of our company resources, the amount of feedback from human agents is very low (~ 2-3% of the total number of questions). So obviously with such less labelled data, […]

Continue Reading →

Neural Networks as a Function Approximator

For the past few days, I have been reading quite a lot of research papers, articles and blogs related to artificial neural networks and its transition towards deep learning. With so many different methods of selecting the best neural network architecture for a problem, the optimal hyper-parameters, the best optimization algorithm and so on, it becomes a little overwhelming to connect all the dots together when we ourselves start to […]

Continue Reading →

Building a Neural Network from scratch in Python

In this post I am going to build an artificial neural network from scratch. Although there exists a lot of advanced neural network libraries written using a variety of programming languages, the idea is not to re-invent the wheel but to understand what are the components required to make a workable neural network. A full-fledged industrial scale neural network might require a lot of research and experimentation with the dataset. Building a simple […]

Continue Reading →

Understanding Convolution for Deep Learning

With the recent advancements in Deep Learning and Artificial Intelligence, there has been continuous interest among machine learning enthusiasts and data scientists to explore frontiers in artificial intelligence on small to medium scale applications that was probably the realm of high speed supercomputers owned by a few tech giants only a few years ago. Few of such applications are Image and Speech Recognition, Language Translators, Automated Image Descriptions, Detecting Phrases […]

Continue Reading →